Make your own free website on Tripod.com

Assembly Instructions: Kit #6

Motor, assembled from Kit #6

Difficulty level: 2 (simple, but requires the use of a soldering iron)

Parts included in this kit

 Printer-friendly assembly instructions in pdf format.

If you want to purchase one of these inexpensive and simple kits, click here.

If you want to understand how it works, click here.

Read all instructions carefully and check the Safety Rules before you start!

  Instructions

  1. Insert the T-pin into one of the caps.
  2. Insert T-pin into the cap

  3. Insert the rotor core into the same cap as shown below. Apply some pressure to push the rotor core approximately 1/2" (10-12mm) into the cap.
  4. Insert rotor core into the cap

  5. Put in the wooden insert.
  6. Put in round wooden insert

  7. Insert the pushpin into the other cap.
  8. Pushpin in another cap

  9. Put everything together as shown below. Push the caps towards each other until they cannot move any more. The T-pin must be secured firmly. This process may require some strength. Be careful not to bend the T-pin or poke yourself.
  10. Assembled rotor

  11. Glue the magnets to the flat surfaces of the rotor core with the letter ‘S’ facing outside. Your kit includes 4 magnets. If you want to try 2 magnets first, glue them to the opposite sides. Straighten the T-pin if necessary. You can check it by spinning the rotor between your thumb and index finger. Again, be very careful.

    All kits have magnets with the South pole marked. If you want this side to look better you may cut out the white glossy round labels that are provided and paste them to the marked sides. You may do it before attaching the magnets to the rotor. It is recommended to use regular white glue or a glue stick on the labels for better results.
  12. Rotor with magnets attached

  13. Insert the rotor into the stands marked with blue and silver stars as shown below. Hold the stands and test to see if rotor spins freely. Make final adjustments to the T-pin if necessary.
  14. Rotor on stands

  15. Glue the stand with the silver star to the board. Try to cover the corresponding star completely. Align the marks on the stand with the line on the board as shown below. Note that the star's position and the marks are approximate, sometimes you need to move the stands slightly to achieve the lowest friction. Keep in mind that super glue bonds instantly, so try to be as accurate as possible in these procedures.
  16. Rotor on board

  17. Insert the rotor into the stand marked with the blue star. Glue it to the board the same way as the first stand. Leave a gap of about 1/16" (1/32", or 0.8mm on each side) between the rotor and the stands. Test again to see if the rotor spins freely. At this time, or later, you may take the rubber plug and fix it as shown below. You can glue different things to the outer flat surface of the plug. Try to be accurate, redo this step if necessary.
  18. Rotor on stands with rubber plug attached

  19. If you purchased the experimentation kit #2 or #3, instead of steps 10-12 for this kit, follow these instructions. After that, please, come back to this page and continue the assembly instructions from step 13.

    Otherwise, insert the nail into the stand with the green star. If it is loose you may apply glue as shown below.
  20. Nail, glued to electromagnet stand

  21. All wire on the spool should be used to wrap around the area between the tape and the head of the nail.
    • Tape one end of wire leaving about 6" (15cm) open. You may use the tape that is already on the nail.
    • Wind all the wire in one rotational direction (either clockwise or counterclockwise) moving back and forth along the nail. Try to be as accurate as possible. Do not let the wire slide off the end of the electromagnet.
    • Tape the second end of the wire using the same tape. Both open ends of wire should be about 6" (15cm) long.
    • Clean about 3/8" (10mm) of the wire tips with fine sandpaper (included) or a sharp knife to remove the insulation.

    Electromagnet

    Test the electromagnet! Connect one wire to "+" and another wire to "-" of the battery. If electromagnet is assembled correctly the head of the nail should attract metal objects such as paper clips, small nails, knife blade, etc.
  22. Glue the electromagnet to the board as shown below. Turn the rotor slowly to see if the magnets hit the electromagnet. If one or more do, move the electromagnet back until there is a 1/16" (1.5mm) gap between the electromagnet and the closest magnet on the rotor.
  23. Rotor and electromagnet assembled on the board

  24. Bend the leads of the Hall effect switch as shown below. If your kit includes 1 large piece of hook-up wire, cut it into 4 pieces of equal length. Strip about 3/8" (10mm) of insulation on each end of these wire pieces using a sharp knife. Solder three wire pieces to the Hall effect switch. If you did not use a soldering iron before it is a good idea to practice on soldering two pieces of wire to each other. See the Links page for tips on soldering.

    IMPORTANT: Do not overheat the Hall effect switch when you solder it. The soldering iron heat may destroy this sensitive device. If you were unable to attach the wire in 3 seconds, let the Hall effect IC to cool off, then try it again. Only solder one lead at a time and allow the device to cool before soldering the next connection. Use the same precautions when soldering the transistor.
  25. Soldering wires to the Hall effect switch

  26. Bend the Hall effect switch leads 90 degrees with branded side facing outside:
  27. Hall effect switch

  28. Insert the Hall effect switch into its stand. Make sure that the leads of the Hall effect IC do not touch each other. You may add a drop of glue to keep the IC and wires in place. Glue only the leads, do not glue IC case to the stand.
    IMPORTANT: It is recommended to glue the Hall effect IC to the stand as a last step after the motor is assembled and the best Hall effect switch position is found.
  29. Hall effect switch on stand

  30. Glue the Hall effect switch holder to the board. The Hall effect switch should be located in front of the magnets at the distance of about 1/8" (3mm) or closer. Check the rotation of the rotor to make sure that the magnets do not hit the Hall effect switch.
  31. Hall effect switch position

  32. Attach the battery holder to the board. The battery holder allows you to experiment with 4 different voltage settings (1.5, 3, 4.5, and 6V DC). You will need 4 AA size batteries.

    To understand how the jumper wire works let's take a look at the connections inside the battery holder:
  33. Empty battery holder

    The following diagram shows how to get 1.5, 3, 4.5, and 6 Volts using 1, 2, 3, or 4 batteries and a jumper wire shown in blue color. Arrows show the current flow for 1.5, 3, and 4.5 Volts settings. Could you trace the current when all 4 batteries are inserted (there is no jumper wire in this case)?

    Jumper connections

    Insert bare ends of the jumper wire between the spring and plastic case to make a good contact and hold them in place. This is how the jumper wire is actually used for 3 Volts experiments (one end is disconnected and may serve as on/off switch):

    3 Volts jumper wire connection

  34. Locate the base (B), collector (C) and emitter (E) leads on the transistor:
  35. Transistor leads

  36. Follow these steps using the wiring diagram for Kit #6 below. You may trim the wires if necessary.
  37. Wiring diagram for Kit #6

Start with 3V. If the motor does not work, increase voltage to 4.5V. If it still doesn’t work, ensure that the rotor can rotate freely and check all the connections – it is important to clean the insulation thoroughly before soldering. Make sure the batteries are fresh and connected properly. If the motor still does not work – click here for troubleshooting.

CAUTION: Do not leave the motor connected to the batteries if the rotor is stalled. High current through the transistor will make it very hot. It may burn your fingers if you touch it and eventually may destroy the transistor.

Our experiments showed that the speed of this motor could be controlled to some extent by an extra magnet the same way the speed control unit works for reed switch motors (see Assembly Instructions: Experimentation Kit #1 and How It Works: Reed Switch Motor). You may buy a speed control unit or just an additional magnet at our ordering page.

CONGRATULATIONS! You have finished assembling this electric motor! Click here for Experiments and Applications.